Experimental robot and payload identification with application to dynamic trajectory compensation

نویسندگان

  • Walter VERDONCK
  • Joris De Schutter
چکیده

Industrial robot manipulators have become an indispensable means of automation to increase flexibility and productivity. The ever increasing quality standards and new applications impose higher requirements on accuracy, reliability and performance. Due to the complex nonlinear robot dynamics, the design of robot controllers should include accurate dynamic robot models. Robot identification is an experimental technique to estimate realistic and accurate dynamic robot models from motion data and actuator torques measured during ‘well-designed’ experiments. This research improves and extends the existing experimental identification methods and applies the obtained dynamic models to improving path tracking control. The influence of a kinematic calibration and more appropriate model descriptions for some additional effects on the obtained model accuracy has been investigated. Further, this work presents the experimental validation of an identification approach using both ‘internal’ and ‘external’ (i.e. a force/torque platform) sensors. The use of different types of sensors into one combined identification problem provides more information on the robot dynamics, yielding improved parameter estimation accuracy and actuator torque prediction. Due to the growing importance of the robot payload, the robot identification method is extended to the estimation of the inertial parameters of the robot payload. In this application not only the actuator torque prediction accuracy is important, but special attention is paid to the accuracy of the individual parameter estimates. This work presents a payload identification approach which does not require a full identification of the manipulator, but compensates for all known robot dynamics based on available a priori information. A sensitivity analysis

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload

In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...

متن کامل

Parameters Identification of an Experimental Vision-based Target Tracker Robot Using Genetic Algorithm

In this paper, the uncertain dynamic parameters of an experimental target tracker robot are identified through the application of genetic algorithm. The considered serial robot is a two-degree-of-freedom dynamic system with two revolute joints in which damping coefficients and inertia terms are uncertain. First, dynamic equations governing the robot system are extracted and then, simulated nume...

متن کامل

Trajectory Optimization of Cable Parallel Manipulators in Point-to-Point Motion

Planning robot trajectory is a complex task that plays a significant role in design and application of robots in task space. The problem is formulated as a trajectory optimization problem which is fundamentally a constrained nonlinear optimization problem. Open-loop optimal control method is proposed as an approach for trajectory optimization of cable parallel manipulator for a given two-end-po...

متن کامل

Delay Compensation on Fuzzy Trajectory Tracking Control of Omni-Directional Mobile Robots

This paper presents a delay compensator fuzzy control for trajectory tracking of omni-directional mobile robots. Fuzzy logic control (FLC) of the robots is a suitable strategy for dealing with model uncertainties, nonlinearities and disturbances.  On the other hand, in many robotic applications such as mobile robots, delay phenomenon is able to substantially deteriorate the behavior of system's...

متن کامل

Robust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot

Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004